skip to main content


Search for: All records

Creators/Authors contains: "Shafranek, Ryan T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Directing polymer self-assembly through noncovalent interactions is a powerful way to control the structure and function of nanoengineered materials. Dynamic hydrogen bonds are particularly useful for materials with structures that change over time or in response to specific stimuli. In the present work, we use the supramolecular association of urea moieties to manipulate the morphology, thermal response, and mechanical properties of soft polymeric hydrogels. Urea-terminated poly(isopropyl glycidyl ether)- b -poly(ethylene oxide)- b -poly(isopropyl glycidyl ether) ABA triblock copolymers were synthesized using controlled, anionic ring-opening polymerization and subsequent chain-end functionalization. Triblock copolymers with hydroxy end-groups were incapable of hydrogelation, while polymers terminated with meta -bis-urea motifs formed robust gels at room temperature. Rheometric analysis of the bulk gels, variable-temperature infrared spectroscopy (VT-IR), differential scanning calorimetry (DSC), and small-angle X-ray scattering (SAXS) confirmed the formation of structured hydrogels via association of the meta -bis-urea end-groups. Monourea end-groups did not result in the same regular structure as the meta -bis-urea. In future, the reported hydrogels could be useful for elastomeric, shape-morphing 3D-printed constructs, or as biomimetic scaffolds with precisely tailored porosity and mechanical properties. 
    more » « less
  2. Abstract

    We describe the synthesis, characterization and direct‐write 3D printing of triblock copolymer hydrogels that have a tunable response to temperature and shear stress. In aqueous solutions, these polymers utilize the temperature‐dependent self‐association of poly(alkyl glycidyl ether) ‘A’ blocks and a central poly(ethylene oxide) segment to create a physically crosslinked three‐dimensional network. The temperature response of these hydrogels was dependent upon composition, chain length and concentration of the ‘A’ block in the copolymer. Rheological experiments confirmed the existence of sol–gel transitions and the shear‐thinning behavior of the hydrogels. The temperature‐ and shear‐responsive properties enabled direct‐write 3D printing of complex objects with high fidelity. Hydrogel cytocompatibility was also confirmed by incorporating HeLa cells into select hydrogels resulting in high viabilities over 24 h. The tunable temperature response and innate shear‐thinning properties of these hydrogels, coupled with encouraging cell viability results, present an attractive opportunity for additive manufacturing and tissue engineering applications. © 2018 Society of Chemical Industry

     
    more » « less